Ch 14: Cardiovascular Physiology, Part 1

concepts:

- Fluid flow
- APs in contractile & autorhythmic cells
- Cardiac cycle (elec. & mech. events)
- HR regulation
- Stroke volume & cardiac output

Running Problem: Heart Attack

Developed by John Gallagher, MS, DVM
Overview of Cardiovascular System

The heart is a dual pump!
Circulation Review

Fig 14-1

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.
Blood Flow

- Why does blood flow through cardiovascular system? (teleological vs. mechanistic answers)
 - *Teleological*: Because diffusion is too slow to support a large and complex organism
 - *Mechanistic*: Because the contractions of the heart produce a hydrostatic pressure gradient and the blood wants to flow to the region of lesser pressure. Therefore, the Pressure gradient (ΔP) is main driving force for flow through the vessels

Blood Flow Rate $\propto \Delta P / R$
Pressure

- Hydrostatic pressure is in all directions
 - Measured in mmHg: The pressure to raise a 1 cm column of Hg 1 mm
 - Sphygmomanometer

- Flow is produce by Driving Pressure

- Pressure of fluid in motion decreases over distance because of energy loss due to friction

Blood Flow Rate $\propto \Delta P/R$
Plumbing 101: Resistance Opposes Flow

3 parameters determine resistance (R):

1. Tube length (L)

 1. Constant in body

2. Tube radius (r)

 1. Can radius change?

3. Fluid viscosity (η (eta))

 1. Can blood viscosity change??

Poiseuille’s law:

$$R = \frac{8L \eta}{\pi r^4}$$

$$\Rightarrow R \propto \frac{1}{r^4}$$

Blood Flow Rate $\propto \Delta P / R$

Fig 14-5
Velocity (v) of Flow

Depends on Flow Rate and Cross-Sectional Area:

- **Flow rate (Q) = volume of blood passing one point in the system per unit of time (e.g., ml/min)**
 - If flow rate ↑ ⇒ velocity ↑

- **Cross-Sectional area (A) (or tube diameter)**
 - If cross sectional area ↑ ⇒ velocity ↓

\[v = \frac{Q}{A} \]
The pathway of a blood cell should be well known to you!
Unique Microanatomy of Cardiac Muscle Cells

- 1% of cardiac cells are autorhythmic
 - Signal to contract is myogenic
- Intercalated discs with gap junctions and desmosomes
 - Electrical link and strength
- SR smaller than in skeletal muscle
 - Extracellular Ca$^{2+}$ initiates contraction (like smooth muscle)
- Abundant mitochondria extract about 80% of O$_2$
Excitation-Contraction (EC) Coupling in Cardiac Muscle

- Contraction occurs by the same sliding filament activity as in skeletal muscle.
- Relaxation similar to skeletal muscle:
 - Ca\(^{2+}\) removal requires Ca\(^{2+}\)-ATPase (into SR) & Na\(^+/Ca^{2+}\) antiport (into ECF).

\([Na^+]\) restored via

- AP is from pacemaker cells (SA node), not neurons.
- AP opens voltage-gated Ca\(^{2+}\) channels in cell membrane.
- Ca\(^{2+}\) induces Ca\(^{2+}\) release from SR stores.

Fig 14-11
1. Action potential enters from adjacent cell.
2. Voltage-gated Ca²⁺ channels open. Ca²⁺ enters cell.
3. Ca²⁺ induces Ca²⁺ release through ryanodine receptor-channels (RyR).
4. Local release causes Ca²⁺ spark.
5. Summed Ca²⁺ sparks create a Ca²⁺ signal.
6. Ca²⁺ ions bind to troponin to initiate contraction.
7. Relaxation occurs when Ca²⁺ unbinds from troponin.
8. Ca²⁺ is pumped back into the sarcoplasmic reticulum for storage.
9. Ca²⁺ is exchanged with Na⁺.
10. Na⁺ gradient is maintained by the Na⁺-K⁺-ATPase.
Cardiac Muscle Cell Contraction is Graded

- **Skeletal muscle cell**: all-or-none contraction in any single fiber for a given fiber length.

 Graded contraction in skeletal muscle occurs through?

- **Cardiac muscle**:
 - force \propto to sarcomere length (up to a maximum)
 - force \propto to # of Ca$^{2+}$ activated crossbridges
 (Function of intracellular Ca$^{2+}$: if $[Ca^{2+}]_{in}$ low \rightarrow
 not all crossbridges activated)

Fig 12-16
Foxglove for a Failing Heart

See cardiac glycosides p. 492

- **Cardiac glycosides** from *Digitalis purpurea*
 - **digoxin**

- Highly toxic in large dosage: destroys all Na\(^+\)/K\(^+\) pumps

- In low dosage: partial block of Na\(^+\) removal from myocardial cells

- The Na\(^+\) - Ca\(^{2+}\) pump is less effective and there will be more Ca\(^+\) for coupling

Explain mechanism of action!
APs in Contractile Myocardial Cells

- Similar to skeletal muscle
- Phase 4: Stable resting pot. ~ -90 mV
- Phase 0: Depolarization due to voltage-gated Na\(^+\) channels (Na\(^+\) movement?)
- Phase 1: Partial Repolarization as Na\(^+\) channels close and voltage-gated K\(^+\) channels open (K\(^+\) movement?)
- Phase 2: Plateau: ↑ K\(^+\) permeability and ↓ Ca\(^{2+}\) permeability
- Phase 3: Repolarization: Back to resting potential

Fig 14-13
APs in Contractile Myocardial Cells

- **Much longer AP**

- **Refractory period and contraction end simultaneously - Why important?**

AP in skeletal muscle: 1-5 msec
AP in cardiac muscle: 200 msec

Fig 14-14
Myocardial Autorhythmic Cells

- Anatomically distinct from contractile cells – Also called **pacemaker** cells

- Membrane Potential = – 60 mV

- Spontaneous AP generation as gradual depolarization reaches threshold
 - Unstable resting membrane potential (= pacemaker potential)
 - The cell membranes are “leaky”
 - Unique membrane channels that are permeable to both Na\(^+\) and K\(^+\)
Myocardial Autorhythmic Cells, cont’d.

I_f-channel Causes Mem. Pot. Instability

- **Autorhythmic cells have different membrane channel:**
 - I_f - channel

- I_f channels let K^+ & Na^+ through at -60mV
- Na^+ influx $> K^+$ efflux
- slow depolarization to threshold

- allow current ($= I$) to flow
- $f = “funny”$: researchers didn’t understand initially
Myocardial Autorhythmic Cells, cont’d.

“Pacemaker potential” starts at ~ -60mV, slowly drifts to threshold

Heart Rate = Myogenic
Skeletal Muscle contraction = ?

Fig 14-15