Discuss the composition of blood including the functions of the various components

Explain the anatomy and functions of the red blood cells, including a description of blood typing

Discuss the types of white blood cells found in the blood and give the functions of each

Give a brief accounting of platelets

Review hemopoiesis, including RBC and leukocyte formation
Functions of Blood

- Distribution/transport - nutrients, wastes, gases, etc.
- Communication, i.e., hormones
- Prevention of fluid loss – hemostasis, osmosis
- Maintenance of pH
- Disease/ infection fighting
- Heating/Cooling
Classification of Connective Tissue (Chapt 4)

- **Connective Tissue Proper**
 - **Loose**
 - Fibers create loose, open framework
 - **Dense**
 - Fibers densely packed

- **Fluid Connective Tissues**
 - **Blood**
 - Contained in circulatory system
 - **Lymph**
 - Contained in lymphatic system

- **Supporting Connective Tissues**
 - **Cartilage**
 - Solid, rubbery matrix
 - **Bone**
 - Solid, crystalline matrix
Blood = connective tissue

Extracellular fluid matrix:
- Plasma

Cells: (= Formed elements)
- RBCs
- WBCs
- Platelets

Hematocrit (centrifuge)
Plasma Composition

- Water
 ~92%
- Plasma proteins 7%
- Other solutes 1%

Transports organic and inorganic molecules, formed elements, and heat.

Lavender Top Tube
Plasma Proteins (90% from liver)

- **Albumin (60%)** Major contributor to osmotic concentration of plasma. Transport of lipids and steroid hormones

- **Globulins (35%)** Transport ions, hormones, lipids; immune function

- **Fibrinogen (4%)** Essential component of clotting system (conversion to insoluble fibrin) **NOT IN SERUM**
 - Anticoagulants (blood thinner), e.g. coumadin

- **Regulatory proteins (< 1%)** Protein-based hormones

- **Lipoproteins** = particles containing lipids (cholesterol & triglycerides) and proteins (albumins & globulins)
Plasma Solutes

- **Electrolytes**: Normal extracellular fluid ion composition
- Organic nutrients: glucose, FA, AA
- Organic wastes: urea, bilirubin
- Dissolved gases
- Nonprotein-based hormones
 - E.g., steroids
Plasma vs. Interstitial Fluid:

Plasma has more:

- Dissolved \(O_2\)
 \(O_2\) diffuses out into tissue
- Dissolved proteins (too big to cross caps.)
 - Albumins
 - Globulins
 - \(\gamma\) globulins
 - \(\alpha\) and \(\beta\) globulins
 - Fibrinogen

Similar concentration: Salts & small molecules
Plasma vs. Serum:

Difference between plasma and serum?

serum = plasma – clotting factors
Formed Elements (Cells)

1. Red Blood Cells (> 99%)
2. White Blood Cells
3. Platelets

PCV = Hematocrit = % of the blood sample that is Formed Elements

Man: 46%
Woman: 42%
Formed Elements cont’d.

Why white blood cells???
1. RBCs = Erythrocytes

Measured by hematocrit (PCV)

Most abundant blood cell: 1000 RBCs/1 WBC

Contain hemoglobin (Hb), carry oxygen

No organelles, just Hb

Lifespan ~ 120 days replacement rate ~ 3×10^6 RBCs/sec
RBC Shape

Biconcave Disc, 7 μ (good measuring device)

1) Larger surface area
2) Flexible
Structure of Hemoglobin (Hb)

Fe ion in heme group reversibly binds O_2

How many oxygen molecules can 1 Hb molecule carry? Four!
Clinical Brief

Anemia:
Reduced oxygen carrying ability of blood. Causes??

Polycythemia:
Erythrocytosis: excessive increase in RBCs
Polycythemia vera:

Blood Doping:
Via direct transfusion, or
EPO use
2. **WBCs = Leukocytes**

- Quantity and type determined by differential WBC count

- Circulating WBCs are only a small fraction of total WBCs. Most are located in interstitial tissues
 - Diapedesis
 - Chemotaxis

- Five different kinds:
 - Three Granulocytes
 - Two Agranulocytes
WBCs = Leukocytes

- Granulocytes
 - Neutrophils (40 – 70%)
 - Eosinophils (1 – 4%)
 - Basophils (0 – 1%)

- Agranulocytes
 - Lymphocytes (20 – 45%)
 - Monocytes (4 – 8%)

Differential WBC count (All total 4000–11,000/mm³)
Neutrophil (= PMN)

PMN = polymorphonuclear leukocyte = poly = seg

- ~ 60-70% (~ 2/3) of circulating WBCs
- Cytoplasm packed with pale granules containing lysosomal enzymes
- Phagocytic
Eosinophil

- ~2% - 4% of circulating WBCs
- Granules stain with acidic dyes (eosin), look reddish
- Increased in allergies and parasitic infections
Basophil

- < 1% of circulating WBCs
- Granules stain with basic dyes (hematoxylin) and contain histamine
- Discharge of histamine promotes inflammation at site of injury
Lymphocyte (chap 21)

- ~ 20% - 30% of circulating WBCs
- Relatively small (slightly larger than RBCs, smaller than PMNs)
- Large round nucleus, not much cytoplasm
- Mostly found in tissues
- Types
 - B lymphs become plasma cells
 - T lymphs attack directly
 - NK recognize “lack of self.”
Monocyte

- ~ 2% - 8% of circulating WBCs
- Large kidney (or U) shaped nucleus
- In tissue, called **Macrophage**

![Monocyte Image]
3. Platelets = Thrombocytes

Cell fragments of **megakaryocytes** of bone marrow

(\(\sim 4,000\) thrombocytes per megakaryocyte)

\(\Ø \sim 160 \mu m\)

Lifespan \(~ 12\) days

involved in blood
3. **Platelets = Thrombocytes**
Clotting Mechanism
Abnormal White Blood Cell Counts

Leukopenia < 2,500/µL (normal 6000 – 9000)
Leukocytosis > 30,000/µL

Thrombocytopenia: < 80,000/µL (normal ~ 350,000)
Thrombocytosis: > 1,000,000/µL

Also
Lymphopenia vs. lymphocytosis
Neutropenia vs. Neutrophilia

Leukemia
Hemopoiesis

= Blood Cell Formation (Red marrow)

Hemocytoblasts: One type of stem cell for all blood cells

. . . then differentiation into 4 types of progenitor stem cells:

- Erythroblast
- Myeloblast
- Monoblast
- Lymphoblast

Developing erythrocytes and granulocytes
Hemopoiesis

Pluripotent Stem Cell

-blast Cells

Fig. 17.8